The SVM class

(Информация о версии неизвестна, возможно, только в SVN)

Введение


Обзор классов


SVM {
/* Constants */
const integer C_SVC = 0 ;
const integer NU_SVC = 1 ;
const integer ONE_CLASS = 2 ;
const integer EPSILON_SVR = 3 ;
const integer NU_SVR = 4 ;
const integer KERNEL_LINEAR = 0 ;
const integer KERNEL_POLY = 1 ;
const integer KERNEL_RBF = 2 ;
const integer KERNEL_SIGMOID = 3 ;
const integer KERNEL_PRECOMPUTED = 4 ;
const integer OPT_TYPE = 101 ;
const integer OPT_KERNEL_TYPE = 102 ;
const integer OPT_DEGREE = 103 ;
const integer OPT_SHRINKING = 104 ;
const integer OPT_PROPABILITY = 105 ;
const integer OPT_GAMMA = 201 ;
const integer OPT_NU = 202 ;
const integer OPT_EPS = 203 ;
const integer OPT_P = 204 ;
const integer OPT_COEF_ZERO = 205 ;
const integer OPT_C = 206 ;
const integer OPT_CACHE_SIZE = 207 ;
/* Methods */
__construct ( void )
public float svm::crossvalidate ( array $problem , int $number_of_folds )
public array getOptions ( void )
public bool setOptions ( array $params )
public SVMModel svm::train ( array $problem [, array $weights ] )
}

Предопределенные константы

SVM Constants

SVM::C_SVC -

The basic C_SVC SVM type. The default, and a good starting point

SVM::NU_SVC -

The NU_SVC type uses a different, more flexible, error weighting

SVM::ONE_CLASS -

One class SVM type. Train just on a single class, using outliers as negative examples

SVM::EPSILON_SVR -

A SVM type for regression (predicting a value rather than just a class)

SVM::NU_SVR -

A NU style SVM regression type

SVM::KERNEL_LINEAR -

A very simple kernel, can work well on large document classification problems

SVM::KERNEL_POLY -

A polynomial kernel

SVM::KERNEL_RBF -

The common Gaussian RBD kernel. Handles non-linear problems well and is a good default for classification

SVM::KERNEL_SIGMOID -

A kernel based on the sigmoid function. Using this makes the SVM very similar to a two layer sigmoid based neural network

SVM::KERNEL_PRECOMPUTED -

A precomputed kernel - currently unsupported.

SVM::OPT_TYPE -

The options key for the SVM type

SVM::OPT_KERNEL_TYPE -

The options key for the kernel type

SVM::OPT_DEGREE -

SVM::OPT_SHRINKING -

Training parameter, boolean, for whether to use the shrinking heuristics

SVM::OPT_PROBABILITY -

Training parameter, boolean, for whether to collect and use probability estimates

SVM::OPT_GAMMA -

Algorithm parameter for Poly, RBF and Sigmoid kernel types.

SVM::OPT_NU -

The option key for the nu parameter, only used in the NU_ SVM types

SVM::OPT_EPS -

The option key for the Epsilon parameter, used in epsilon regression

SVM::OPT_P -

Training parameter used by Episilon SVR regression

SVM::OPT_COEF_ZERO -

Algorithm parameter for poly and sigmoid kernels

SVM::OPT_C -

The option for the cost parameter that controls tradeoff between errors and generality - effectively the penalty for misclassifying training examples.

SVM::OPT_CACHE_SIZE -

Memory cache size, in MB


Содержание


Описание класса svm, примеры использования класса svm.



Смотрите также:
Описание на ru2.php.net
Описание на php.ru